Assessment of Scott River salmon performance under historical, current, and restoration scenarios

> February 17, 2022 Larry Lestelle

Acknowledgements

- Craig Tucker, Suits and Signs Consulting, LLC
- Toz Soto, Karuk Tribe
- Susan Fricke, Karuk Tribe
- Crystal Robinson, Quartz Valley Indian Reservation
- Tim Abbe, Natural Systems Design, Inc.
- Bill Chesney, California Department of Fish and Wildlife (retired)
- Rocco Fiori, Fiori Geological Science
- Deborah Hathaway, S.S. Papadopulos & Associates
- Leaf Hillman, Karuk Tribe
- Greg Blair, ICF
- Laura McMullen, ICF

Presentation outline

- Conclusions abstract
- Purpose
- Approach
- Historical overview
- Historical and current baselines
- Diagnosis and prioritization
- Restoration scenario analysis
- Conclusions

Conclusions abstract

Diagnostic summary

- Extensive, large-scale alterations to watershed processes & habitat functions (CUMULATIVE EFFECTS OF MULTIPLE ISSUES)
- Massive declines in performance of coho, fall chinook, and spring chinook

Prognosis without intervention

- Coho extirpated by mid-century
- Fall chinook sharp reductions by mid-century
- > No chance for spring chinook
- Urgent need for <u>significant</u> intervention
 - Major, comprehensive, coordinated restoration effort is URGENTLY needed

Conclusions abstract

Diagnostic summary

- Extensive, large-scale alterations to watershed processes & habitat functions (CUMULATIVE EFFECTS OF MULTIPLE ISSUES)
- Massive declines in perfection of the sector of the sec

Prognosis without inte

- Coho extirpated \$
- Fall chinook sharp
- No chance for sprin
- Urgent need for sig.
 - Major, comprehensive, co effort is URGENTLY needeo

BUT ... Read the

report

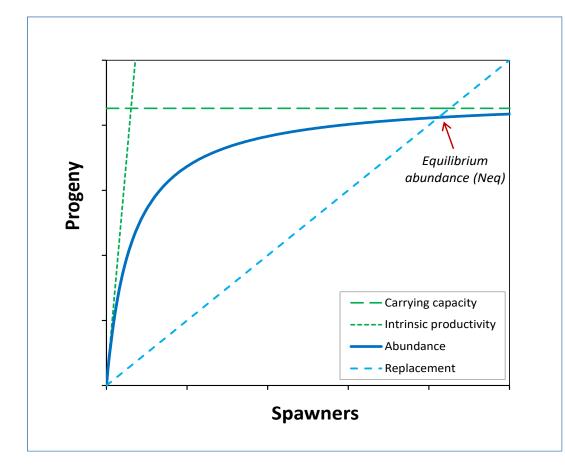
Purpose of assessment

- > Aimed at answering two questions:
 - What is broken in the watershed with respect to salmon performance?
 - > What needs to be fixed
- Answering these is essential to developing an effective restoration and recovery action plan for the subbasin— if indeed such a plan can be developed and implemented.
- Guidance is provided on priorities for doing this

Objectives

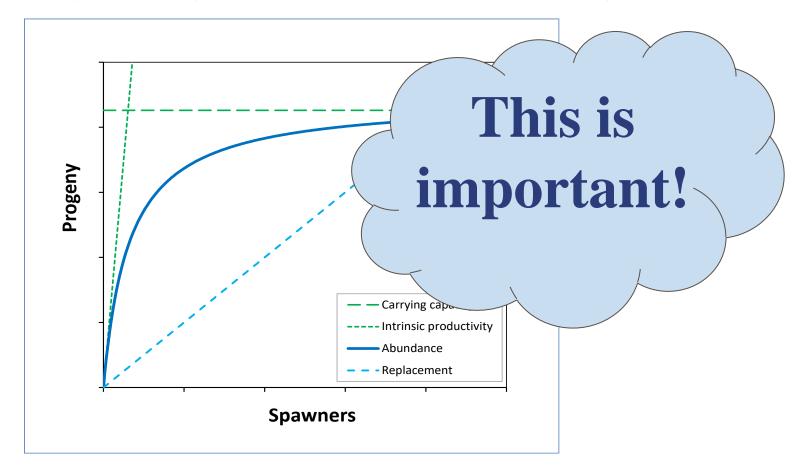
- Identify the extent of declines in performance of the coho, fall Chinook, and spring Chinook;
- 2. Diagnose the major limiting factors affecting salmon populations and prioritize restoration and protection measures;
- 3. Project the extent of improved population performance under a set of <u>HYPOTHETICAL</u> habitat management scenarios for the subbasin

Approach & methods

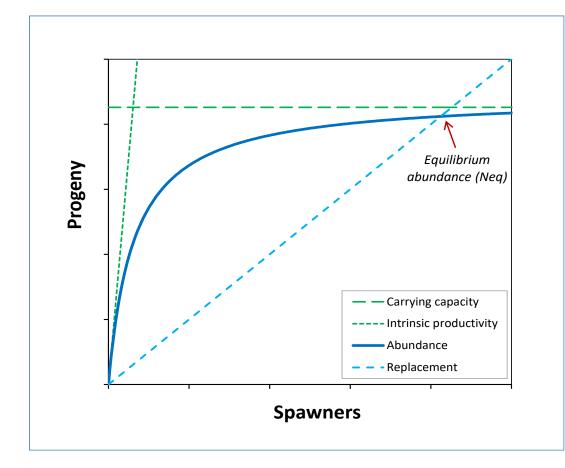

- Viable Salmon Population (VSP) framework developed by NMFS - four characteristics
 - > Abundance
 - > Intrinsic productivity
 - > Spatial structure
 - > Biological diversity

Approach & methods

- Viable Salmon Population (VSP) framework developed by NMFS - four characteristics
 - > Abundance
 - > Intrinsic productivity
 - Spatial structure
 - Biological diversity
- The Ecosystem Diagnosis and Treatment (EDT) Method (model)

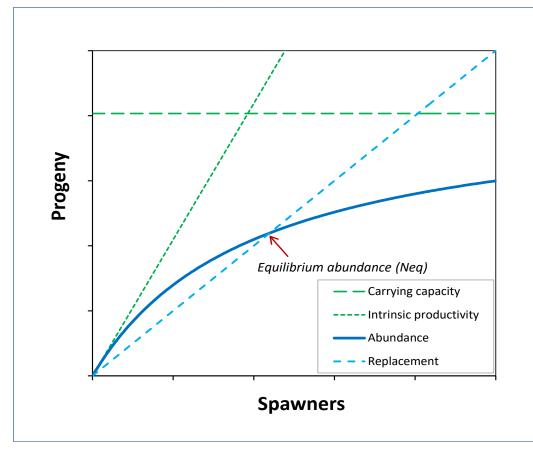

VSP framework defines performance

Abundance and productivity - illustrated in the spawner-production (S-P) relationship



VSP framework defines performance

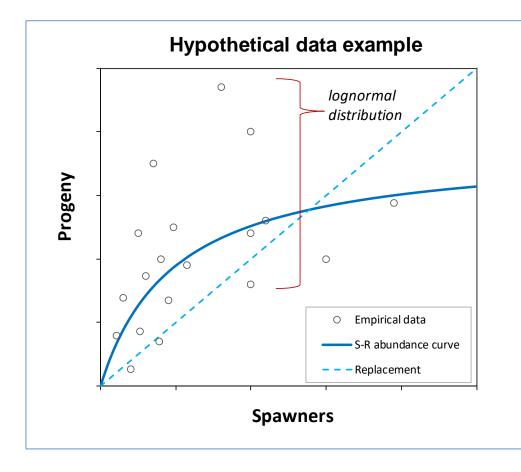
Abundance and productivity - illustrated in the spawner-production (S-P) relationship


Abundance and productivity - illustrated in the spawner-production (S-P) relationship

- <u>Productivity</u> habitat quality & connectivity
- <u>Capacity</u> habitat quantity and quality
- Equilibrium abundance (Neq)
- Surplus over replacement

Resilience

Reduced productivity - loss in habitat quality & connectivity



- Flattened curve
- Reduced Neq
- Loss in surplus over replacement
- Comment on loss in capacity

Loss in resilience

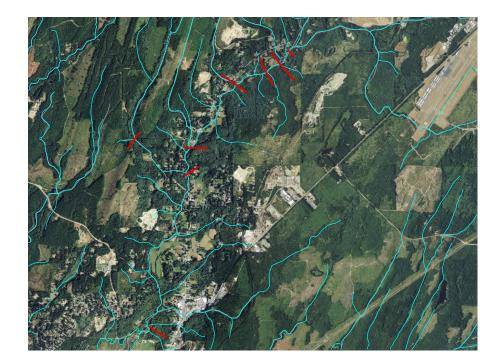
- Spatial structure and diversity
 - > Spatial and temporal distribution
 - > Life history and genetic diversity
 - These are critical for resilience!

> Importance of variability in performance

- High variability INCREASES risk of extinction
- Notice "lognormal distribution"

Loss in resilience

EDT Method & model


- Rooted in the VSP framework
- Used in salmon population and environmental assessments, recovery analysis, & restoration planning
- Numerous assessments throughout the Pacific Northwest over the past 25 years

EDT Method & model

The Watershed Working Hypothesis Environmental Salmonid attributes response Biological rules Action Potential Goal Decision actions Other inputs

Inputs

All stream reaches delineated and defined (by confluences and general characteristics) these can be as small or large as relevant (zero length reaches can be culverts and barriers)

Stream reaches

- 268 reaches identified with length >0 meters in the Scott subbasin
- Another 68 reaches for structures (reach length = 0)
- 336 total reaches

Inputs

All stream reaches characterized by a standard set of habitat attributes

CHANNEL LENGTH AND WIDTH

Channel length Channel month Maximum width (ft) Channel month Minimum width (ft)

FLOW RELATED

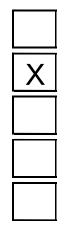
Flow - change in interannual variability in high flows Flow - changes in interannual variability in low flows Flow - Intra daily (diel) variation Flow - intra-annual flow pattern Hydrologic regime - natural Hydrologic regime - regulated Water withdrawals TEMPERATURE

Temperature - daily maximum (by month) Temperature - daily minimum (by month) Temperature - spatial variation

CHANNEL/HABITAT CHARACTERISTICS

Bed scour Confinement - Hydromodifications Confinement - natural Embeddedness Fine sediment Gradient Hatchery fish outplants Icing Obstructions to fish migration Riparian function Turbidity Wood

MISC. WATER QUALITY/BIOTIC QUALITIES


Alkalinity Benthos diversity and production Dissolved oxygen Fish community richness Fish pathogens Fish species introductions Harassment Metals - in water column Metals/Pollutants - in sediments/soils Miscellaneous toxic pollutants - water column Nutrient enrichment Predation risk Salmon carcasses

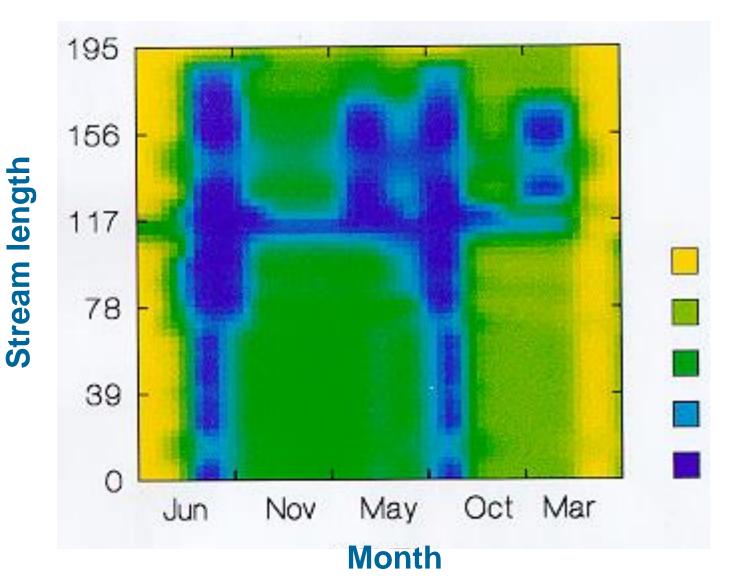
CHANNEL/HABITAT CHARACTERISTICS

Habitat type - backwater pools Habitat type - beaver ponds Habitat type - glides Habitat type - large cobble/boulder riffles Habitat type - off-channel habitat factor Habitat type - pool tailouts Habitat type - primary pools Habitat type - small cobble/gravel riffles

Attribute:*Fine sediment*Definition:Percentage of fine sediment within riffles.

For each reach and month, a conclusion is made . . .

- < 6% fines < 0.85 mm
- > 6% and < 11% fines < 0.85 mm
 - > 11% and < 18% fines < 0.85 mm
 - > 18% and < 30% fines < 0.85 mm
 - > 30% fines < 0.85 mm

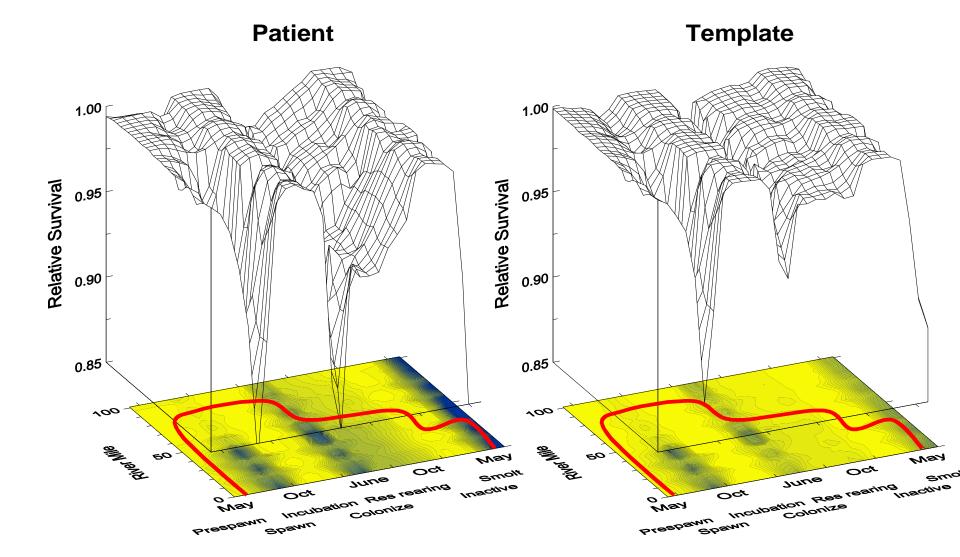

...rationale or rule documented

Sources for inputs

Large number of reports, scientific papers, Google Earth

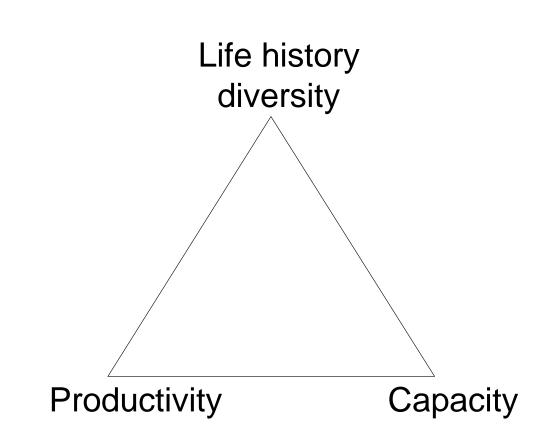
Environmental characteristics	Primary sources	Citations
 Sediment load Fine sediment concentrations in salmon spawning areas in misc. tributaries and Scott R. Embeddedness values Characterized for both historical and current conditions 	Scott River Basin Granitic Sediment Study; Scott River Watershed Monitoring Program 2005, 2006 & 2007; Scott River Spawning Gravel Evaluation and Enhancement Plan	CDFG (2002a, 2002b, 2002c, 2002d, 2002e, 2002f, 2005, 2008a, 2008b); Sommarstrom et al. (1990); Quigley (2003, 2008); USFS (2000); Cramer Fish Sciences (2010)
 <u>Riparian conditions</u> Riparian condition for all relevant stream reaches in the subbasin Characterized for both historical and current conditions 	Scott River Basin Granitic Sediment Study; Lower Scott Ecosystem Analysis; Google Earth	Sommarstrom et al. (1990); USFS (2000)
 <u>Water diversions</u> Locations of diversions and amounts of water diverted (either at specific sites or approximate aggregated amounts at different locations) 	Scott River Watershed CRMP Committee; Scott River Watershed-wide Permitting Program Final Environmental Impact Report FEIR Volume 1: Chapter 3.3; State Water Resources Control Board – maps showing diversions and irrigated lands; Scott River Water Trust reports	Davis (1997); ESA (2009); SWRCB (1979); Yokel (2008, 2009, 2012); Thamer (2013, 2015)

Attribute conditions create a spatial-temporal mosaic of habitat conditions – a survival landscape


Biological performance can then be assessed

- Survival landscapes integrate conditions of all environmental attributes and associated survival parameters
- Life history analysis based on known life history patterns for species

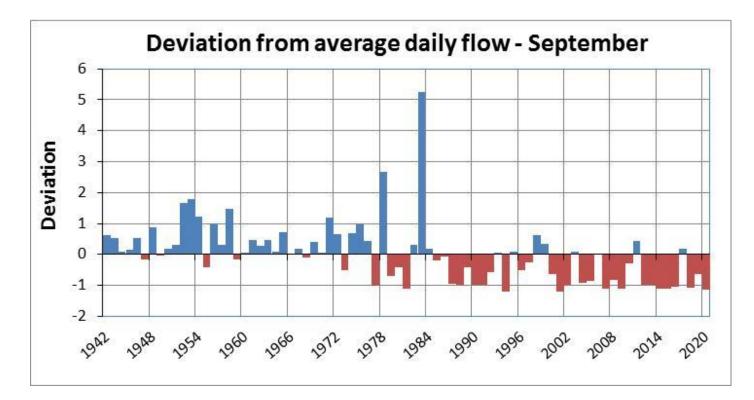
Habitat characterization done for historic and current conditions

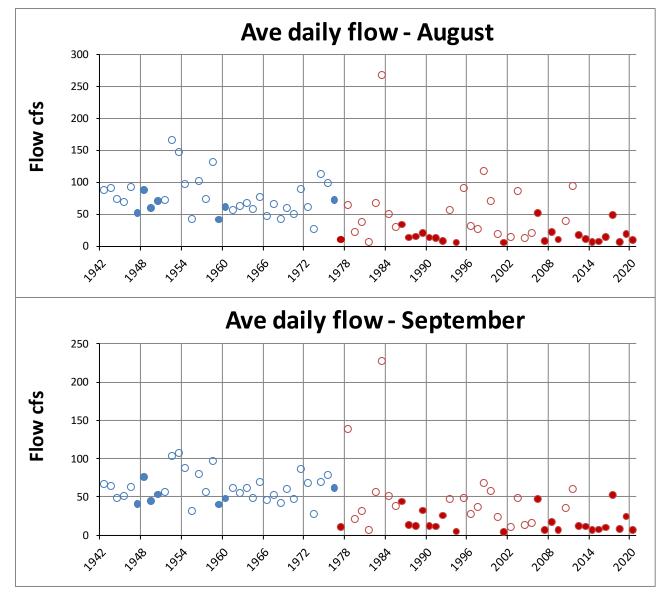

- Historical based on synthesis of available information and assumptions based on stream type and prevailing conditions for area
- Current condition based on synthesis of any/all available assessment data

Relative Survival Experienced by Stream Type Spring Chinook in Lower Deschutes River (with example life history pathway)

Model output for population performance expressed by three measures

Diagnosis based on comparison of current conditions to historical...


- Limiting factors (bottlenecks to production)
- Contributing factors (effects of single or groups of factors contributing to cumulative effects)
- Factors prioritized relative to importance in affecting overall performance


Identify strategic priorities through diagnosis

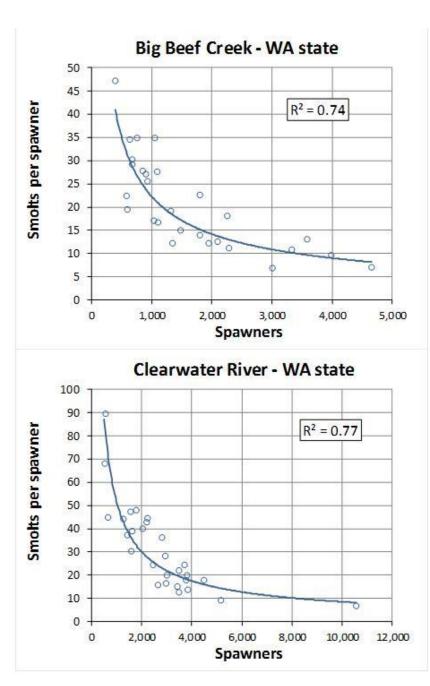
- Restoration benefits identified and ranked according to potential reach contribution
- Protection benefits identified and ranked according to potential reach contribution
- Combined potential restoration and protection benefits can be organized as strategic priorities for identifying suitable actions

- History of alterations
 - Beaver trapping (channels, flow, floodplains)
 - Gold mining (channels, sediment, floodplains, riparian)
 - Agriculture (channels, sediment, flow, riparian, temperature, wood, floodplains, groundwater)
 - Logging (sediment, wood)
 - Groundwater pumping
 - Climate change

> Changes in flow patterns

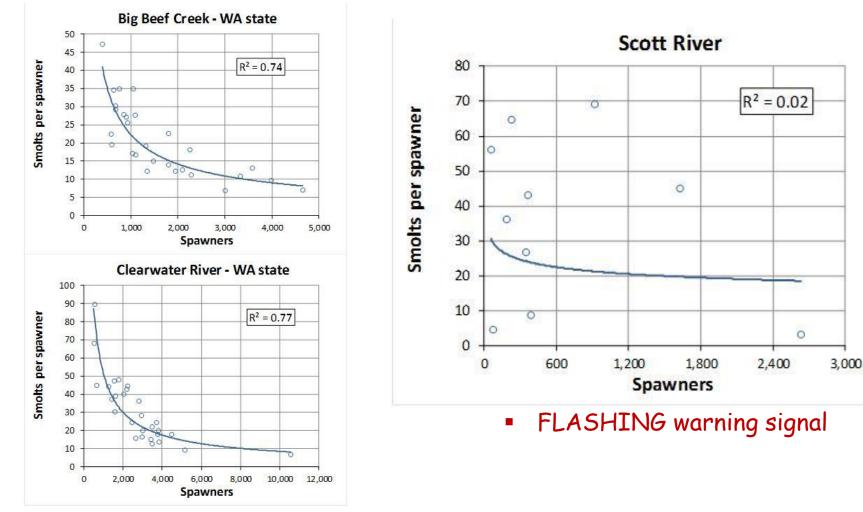
- GW prepumping and pumping
- Drought vs non-drought years in CA

- > Changes in salmon populations coho
 - > From analysis prepared for Yurok Tribe


Method		Mean smolt capacity
1	Ackerman	222,700
2	ONCC TRT regression	3,010,800
3	Bradford regression ^{1/}	506,700
4a	EDT regression - watershed size	892,200
4b	EDT regression - stream length	525,100

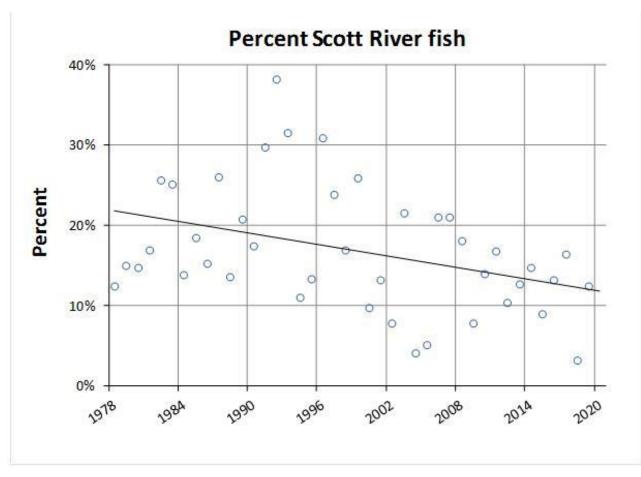
Summer flow	Marine survival scenario			
scenario	Low (1%)	Average (4%)	High (8%)	
Low	3,265	13,060	26,119	
Average	5,251	21,004	42,008	
High	7,237	28,948	57,897	

- > Changes in salmon populations coho
 - > Current production

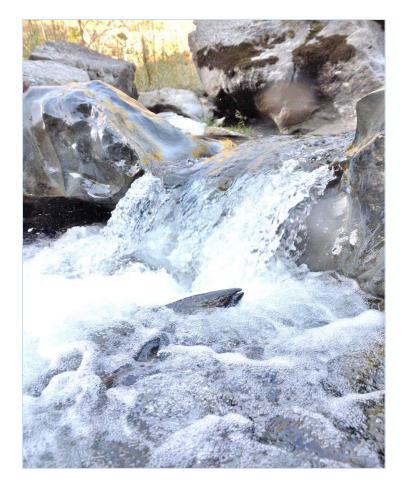

Year	Smolts	Adult coho
2003	42,190	
2004		
2005	1,780	
2006	95,815	
2007	3,931	1,622
2008	1,142	58
2009	73,232	75
2010	3,257	913
2011	353	344
2012	63,135	186
2013	9,283	2,631
2014	6,734	383
2015	8,758	188
2016	3,372	226
2017		364
2018	14,628	712
2019	15,707	326
Min	353	58
Max	95,815	2,631
Geometric mean	8,398	356

- Changes in salmon populations coho
 - Widely variable productivity (density-independent driven)

> Changes in salmon populations - coho


Widely variable productivity (density-independent driven)

- > Changes in salmon populations fall chinook
 - > Current production

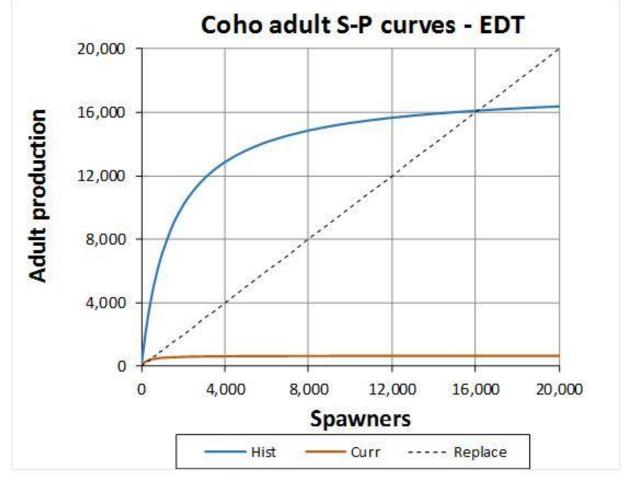

Years	Klamath R	Scott R	% Scott R
1978-1983	19,754	3,537	18%
1984-1989	21,112	3,861	18%
1990-1995	23,481	3,977	17%
1996-2001	33,723	6,241	19%
2002-2007	28,245	4,149	15%
2008-2013	30,734	3,725	12%
2014-2019	28,205	3,174	11%

- Changes in salmon populations fall chinook
 - Current production

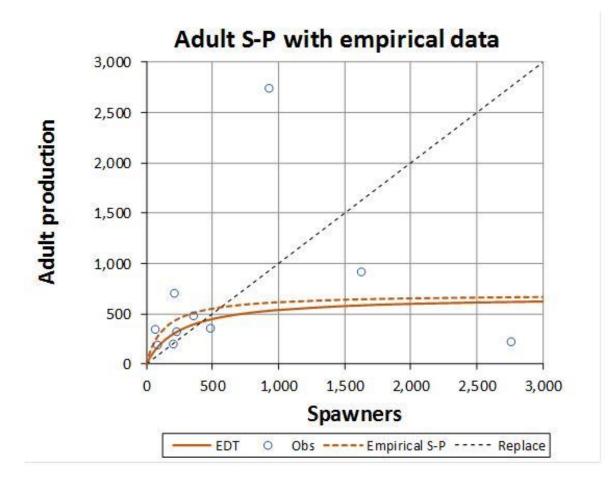
- Scott R performance declining relative to the rest of Klamath natural fall chinook
- Trinity and Lower
 Klamath not applied here
- Warning signal

- Changes in salmon populations fall chinook
 - Canyon & valley subpopulations

- Entry to the valley getting extremely difficult
- Warning signal

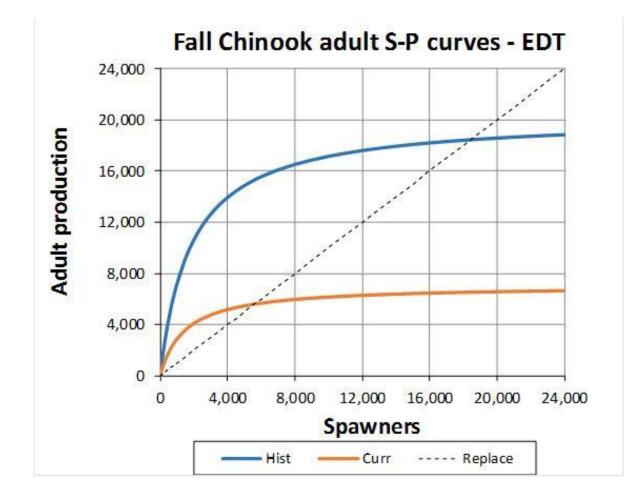

- Changes in salmon populations spring chinook
- Historical approximately 5,000 (from Moyle et al. 2008)
- Current EXTIRPATED...1970s

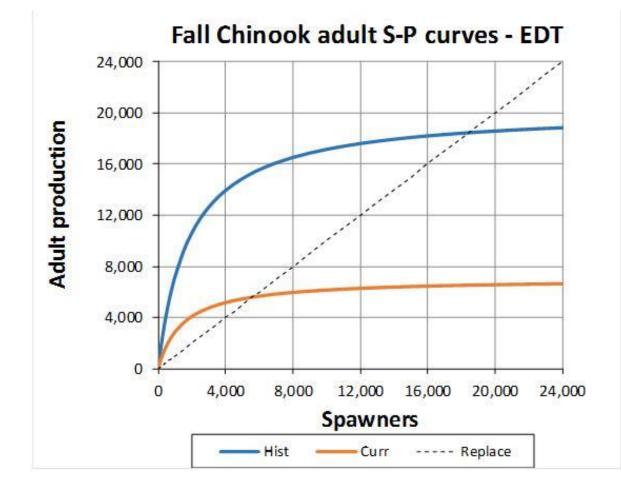
Modeling baseline performance - Coho


> Coho

			Populat		Percent change from									
Population		Histo	orical			Curr	ent		historical to current					
component	Neq	Cap	Prod	LHD	Neq	Cap	Prod	LHD	Neq	Cap	Prod	LHD		
All	16,071	17,579	12.0	98.5%	415	676	2.7	5.0%	-97.4%	-96.2%	-77.8%	-95.0%		
Forks	1,818	1,995	11.3	98.3%	43	83	2.1	0.9%	-97.6%	-95.8%	-81.6%	-99.0%		
Upper valley	3,742	4,051	13.1	97.9%	193	303	2.8	14.0%	-94.8%	-92.5%	-79.0%	-85.7%		
Lower valley	10,334	11,295	11.8	98.8%	130	244	2.1	1.3%	-98.7%	-97.8%	-81.7%	-98.7%		
Canyon	171	237	3.6	6.1%	21	46	1.8	0.1%	-87.7%	-80.4%	-49.2%	-98.4%		

> Coho


> Coho


Historical & current baselines – model > Fall chinook

-			Populat	Percent change from										
Population		Histo	rical			Curr	ent		historical to current					
compone nt	Neq	Cap	Prod	LHD	Neq	Cap	Prod	LHD	Neq	Сар	Prod	LHD		
All	18,451	20,266	11.2	100%	5,596	7,044	4.9	68%	-69.7%	-65.2%	-56.4%	-31.9%		
Upper valley	2,034	2,199	13.3	100%	360	498	3.6	81%	-82.3%	-77.3%	-72.9%	-19.1%		
Lowervalley	11,622	12,781	11.0	100%	2,188	3,087	3.4	51%	-81.2%	-75.8%	-68.9%	-49.3%		
Canyon	4,795	5,286	10.8	100%	2,840	3,459	5.6	96%	-40.8%	-34.6%	-48.1%	-4.2%		

> Fall chinook

Fall chinook

- Fisheries ER~ 0.48
- Productivity to the valley ~ 3.5
- Accounting for fisheries, productivity
 ~ 1.8 to the valley (warning)

Diagnosis & prioritization - modeling
 Tornado charts for area prioritization
 Restoration
 Protection

- Consumer report-style charts for factors
 - Attribute factor importance

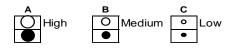
Diagnosis & prioritization - modeling

Geographic areas

 32 areas prioritized

No.	Geographic Area (Diagnostic Unit)	Description
1	SR canyon MS lower	Scott R. mainstem within the canyon from the confluence with Klamath R. (RM 0.0) to Middle Cr. (RM 12.8).
2	SR canyon tribs	Tributaries to Scott R. within the canyon.
3	SR canyon MS upper	Scott R. mainstem within the canyon from Middle Cr. (RM 12.8) to Marilyn Cr. (RM 22.7).
4	SR valley to Kidder Cr	Scott R. mainstem within the valley from Marilyn Cr. (RM 22.7) to Kidder Cr. (RM32.4).
5	East tribs to Ft Jones	All right bank tributaries (east side) to Scott R. upstream of the canyon and downstream of Moffett Cr.
6	Sniktaw Cr	Sniktaw Cr. system.
7	Shackleford Cr	Shackleford Cr. system excluding the Mill-Emigrant Cr. system.
8	Mill-Emigrant Cr	Mill-Emigrant Cr. system (tributary to Shackleford Cr.).
9	Oro Fino Cr	Oro Fino Cr. system.
10	Moffett Cr lower	Lower Moffett Cr. system downstream of Soap Cr. (excluding Soap Cr.).
11	Moffett Cr upper	Upper Moffett Cr. system upstream of Soap Cr. (including Soap Cr.).
12	Kidder lower-Big Slough	Lower Kidder Cr. and Big Slough complex.
13	Patterson Cr	Patterson Cr. system (tributary to Kidder Cr Big Slough complex).
14	Crystal-Johnson Cr	Crystal Cr. and Johnson Cr. (tributaries to Kidder Cr Big Slough complex).
15	Kidder Cr upper	Upper Kidder Cr. system upstream of the confluence with Big Slough.
16	SR valley to Etna Cr	Scott R. mainstem within the valley from Kidder Cr. (RM 32.4) to Etna Cr (RM 42.5).
17	East Slough	East Slough complex on the right bank (east side) of Scott R. within the valley.
18	Etna Cr	Etna Cr. system.
19	SR valley to tailings	Scott R. mainstem within the valley from Etna Cr. (RM 42.5) to the downstream end of the tailings reach (RM 51.5).
20	Clark Cr	Clark Cr. system.
21	French Cr lower	Lower French Cr. downstream of Miners Cr.; includes beaver dam complex in tributary near French Cr. mouth.
22	Miners Cr	Miners Cr. system.
23	French Cr upper	French Cr. system upstream of Miners Cr.
24	Wolford Slough	Wolford Slough complex that periodically connects to the right bank tributary to lower French Cr. This slough complex is a relect mainstem channel of Scott R.
25	SR valley to forks	Scott R. mainstem within the valley from the downstream end of the tailings reach (RM 51.5) to the forks (RM 56.8). Includes all of the tailings reaches.
26	Sugar Cr	Sugar Cr. system.
27	Wildcat Cr	Wildcat Cr. system.
28	South Fork MS	South Fork mainstem.
29	South Fork tribs	All South Fork tributaries.
30	East Fork MS lower	East Fork mainstem from the confluence with South Fork to Grouse Cr.
31	East Fork tribs	All East Fork tributaries.
32	East Fork MS upper	East Fork mainstem upstream of Grouse Cr.

Diagnosis & prioritization – coho


Scott River Coho salmon (normalized by reach length) Relative Importance Of Geographic Areas For Protection and Restoration Measures

Geographic Area		ection nefit		oration nefit	Change	in Ab	undance with	Char	nge in Pro	ductivity	/ with	Change in Diversity Index				
Coographic / Tou	Catego	ory/rank	Catego	ory/rank	Degradati	on	Restoration	Degrad	lation	Rest	oration	Degrada	ation	Restoratio		
French Cr lower	А	2	Α	3												
SR valley to tailings	Α	1	Α	8												
SR valley to Etna Cr	В	7	Α	4												
SR valley to Kidder Cr	В	10	Α	1												
SR valley to forks	В	6	Α	6												
Shackleford Cr	В	12	А	1						koono						
Wolford Slough	А	2	Α	11												
Kidder lower-Big Slough	В	10	Α	5							_					
Mill-Emigrant Cr	В	8	Α	10												
East Fork MS lower	С	19	Α	7												
East Slough	С	16	Α	11												
Clark Cr	С	18	Α	13												
Miners Cr	В	8	С	26												
South Fork MS	С	16	В	18												
SR canyon MS upper	В	4	Е	30												
East Fork MS upper	С	22	Α	13												
SR canyon MS lower	В	5	Е	31										L		
Sugar Cr	В	12	С	24												
Patterson Cr	С	21	В	16												
French Cr upper	В	12	D	28		******								L		
Moffett Cr lower	D	25	В	15												
Oro Fino Cr	Е	31	Α	9						I						
East Fork tribs	С	15	D	27												
Sniktaw Cr	С	22	В	20							1			1		
Crystal-Johnson Cr	D	24	В	19												
Kidder Cr upper	D	27	B	17							1			<u> </u>		
East tribs to Ft Jones	D	25	С	22												
South Fork tribs	С	20	E	29							Í			1		
Moffett Cr upper	D	27	C	23												
Etna Cr	D	30	C	21			-			- L a			ľ			
Wildcat Cr	D	27	С	24									•			
					-20%	09	% 20%	-209	% 0	% 2	0%	-20%	0%	<i>а</i> 20%		

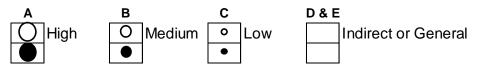
			Attribute class priority for restoration															
Geographic area	Protection benefit	Restoration benefit	Channel stability	Chemicals	Competition (w/ hatch)	Competition (other sp)	Flow characteristics	Food	Habitat diversity	Harassment/poaching	Obstructions	Oxygen	Pathogens	Predation	Sediment load	Temperature	Withdrawals	Habitat quantity
SR canyon MS lower	0								•									
SR canyon MS upper	0								•									
SR valley to Kidder Cr	0	Ο	•				•								•			
East tribs to Ft Jones		0	•				•	•	•	•					•	•		•
Sniktaw Cr	0	0	٠				•		\bullet						•			•
Shackleford Cr	0	Ο					•								•			\bullet
Mill-Emigrant Cr	0	Ō					•		Ō						٠			•
Oro Fino Cr		Ŏ	•					•	•	•					•			
Moffett Cr lower		ŏ	•				•	•	\bullet						•			Ŏ
Moffett Cr upper		0					•								٠			•
Kidder lower-Big Slough	0	\bigcirc	٠				•		Ĭ						٠	٠		
Patterson Cr	0	Õ					•								٠			•
Crystal-Johnson Cr		0	٠				•		Ŏ						٠	٠		•
Kidder Cr upper		0	٠				•								٠			•
SR valley to Etna Cr	0	\bigcirc	•				•		•		1				•			
East Slough	0	Ŏ	٠				•	•							•	٠		Ŏ
Etna Cr		0					•								٠			Ŏ
SR valley to tailings	\bigcirc	\bigcirc	•				•		•						٠			
Clark Cr	õ	Ŏ					•	•										Ŏ
French Cr lower	\bigcirc	Õ					•								٠			•
Miners Cr	Õ	0					•		\bullet						•			•
French Cr upper	0						•											٠
Wolford Slough	\bigcirc	\bigcirc	٠				•	•	•						٠			
SR valley to forks	Õ	Ŏ	٠					•										Ō
Sugar Cr	0	0					•		Ŏ						٠			•
Wildcat Cr		0	٠					•							٠			٠
South Fork MS	0	0					•		Ŏ									•
South Fork tribs	0						•		Ō									
East Fork MS lower	0	\mathbf{O}					•	•	•									•
East Fork tribs	0					1	•		Ŏ		1				•			•
East Fork MS upper	0	Ο	•				•	•										•
· · · ·							İ											

Scott River Coho salmon (normalized by reach length) Protection and Restoration Strategic Priority Summary

Key to strategic priority (corresponding Benefit Category letter also shown)

D & E Indirect or General

Diagnosis & prioritization – Fall Chinook

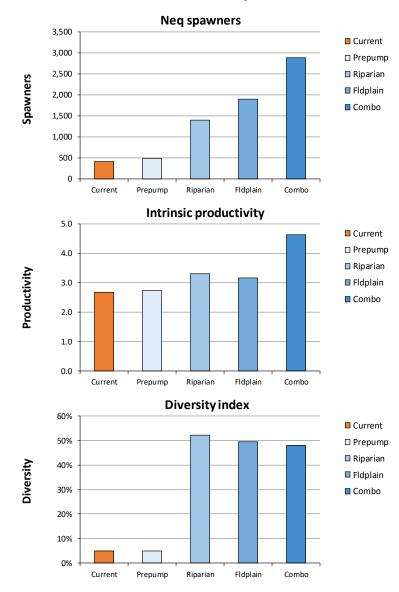

Scott River Fall Chinook (normalized by reach length) Relative Importance Of Geographic Areas For Protection and Restoration Measures

Geographic Area		ection nefit		oration nefit	Change	in Abunc	lance with		Change in	Product	ivity with	Cha	Change in Diversity Index with				
	Catego	ory/rank	Catego	ory/rank	Degradation		Restoration		Degradation		Restoration		radation	F	Restoration		
SR canyon MS lower	А	1	А	6													
Shackleford Cr	В	7	А	1													
SR valley to Kidder Cr	В	5	А	3													
SR canyon MS upper	А	2	В	8													
SR valley to tailings	В	6	А	5													
SR valley to Etna Cr	С	10	А	2													
Kidder lower-Big Slough	В	6	В	7													
Etna Cr	В	7	В	9													
Moffett Cr lower	D	13	Α	3													
SR canyon tribs	Α	3	D	13													
Patterson Cr	С	10	В	9													
Mill-Emigrant Cr	В	8	С	12													
Kidder Cr upper	С	12	С	11													
Sniktaw Cr	D	14	D	13													
					-2%	0%	2%		-2%	0%	2%	-	-2%	0%	2%		
					Percentage ch		hange		Percentag		age change		Percentage		ange		

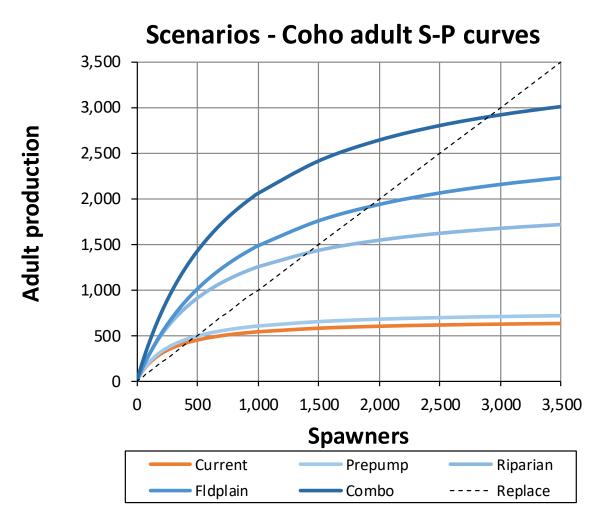
Scott River Fall Chinook (normalized by reach length) Protection and Restoration Strategic Priority Summary

Geographic area prio	rity					A	Attrib	ute c	lass	s prio	rity	for re	estor	atior	า			
Geographic area	Protection benefit	Restoration benefit	Channel stability	Chemicals	Competition (w/ hatch)	Competition (other sp)	Flow	Food	Habitat diversity	Harassment/poaching	Obstructions	Oxygen	Pathogens	Predation	Sediment load	Temperature	Withdrawals	Key habitat quantity
SR canyon MS lower	Ο	Ο					•								•			
SR canyon MS upper	Ο	0					•								•			\bullet
SR canyon tribs	Ο																	
SR valley to Kidder Cr	0	Ο	٠				\bullet								٠			
Sniktaw Cr			٠				\bullet	•										\bullet
Shackleford Cr	0	Ο					\bullet								٠			\bullet
Mill-Emigrant Cr	0	0					٠											\bullet
Moffett Cr lower		Ο	٠					•							٠			
Kidder lower-Big Slough	0	0	•				٠								٠			
Patterson Cr	0	0	•												٠			\bullet
Kidder Cr upper	0	0	•												٠			•
SR valley to Etna Cr	0	Ο	•															
Etna Cr	0	Ō	•					•		•								
SR valley to tailings	0	Ο	٠				\bullet								•			

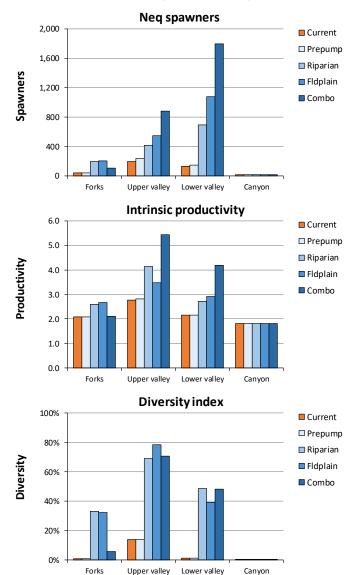
Key to strategic priority (corresponding Benefit Category letter also shown)


Restoration scenario analysis - modeling

Four hypothetical scenarios to inform restoration conceptualization


Scenario	Areas affected directly	Description
Restore prepumping flow	All reaches directly affected by major groundwater pumping	Restore surface water flows to levels prior to the onset of major groundwater pumping that began in the early to mid-1970s
Restore riparian	Entire subbasin	Restore all riparian zone conditions to historical characteristics (no changes are assumed for floodplain channels or in-stream channels)
Restore floodplains	Entire subbasin	Restore all floodplain channel conditions to historical characteristics (no changes are assumed for riparian vegetation or in-stream channels)
Combination	All reaches directly affected by major	Restores a combination of conditions from scenarios above:
	groundwater pumping	 Restore ½ of surface flow lost by groundwater pumping
		 Restore ½ of riparian zone conditions to reaches directly affected by groundwater pumping
		 Restore ½ of floodplain channel conditions to reaches directly affected by groundwater pumping
		 Restore ½ of historical wood load to reaches directly affected by groundwater pumping
		 Restore in-stream channel habitat types to the average of historical and conditions

Restoration scenario analysis - coho


Current and scenario coho performance

Restoration scenario analysis – coho

Restoration scenario analysis - coho

Scenario Coho performance by area

Conclusions

- Diagnostic summary
 - Conclusions not surprising
 - Modeling supported by empirical evidence
 - Multiple reasons for declines cumulative
- Prognosis without intervention
 - Bleak without major interventions
 - Climate effects (ocean is a wild card)
- Urgency
 - Time is running out on these salmon stocks
 - Comprehensive, integrated plan needed

"The recovery of the Pacific salmon will be thwarted until at least some of the natural pathways through the riverscape are restored, until we give life to the ghosts of those salmon life histories that were once present in healthy rivers."

- Jim Lichatowich, Salmon Without Rivers